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Free boundary effects on baroclinic instability
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The effects of a free boundary on the stability of a baroclinic parallel flow are
investigated using a reduced-gravity model. The basic state has uniform density
stratification and a parallel flow with uniform vertical shear in thermal-wind balance
with the horizontal buoyancy gradient. A finite value of the velocity at the free (lower)
boundary requires the interface to have a uniform slope in the direction transversal
to that of the flow. Normal-mode perturbations with arbitrary vertical structure are
studied in the limit of small Rossby number. This solution is restricted to neither a
horizontal lower boundary nor a weak stratification in the basic state.

In the limit of a very weak stratification and bottom slope there is a large separation
between the first two deformation radii and hence short or long perturbations may
be identified:

(a) The short-perturbation limit corresponds to the well-known Eady problem in
which case the layer bottom is effectively rigid and its slope in the basic state is
immaterial.

(b) In the long-perturbation limit the bottom is free to deform and the unstable
wave solutions, which appear for any value of the Richardson number Ri, are
sensible to its slope in the basic state. In fact, a sloped bottom is found to stabilize
the basic flow.

At stronger stratifications there is no distinction between short and long perturba-
tions, and the bottom always behaves as a free boundary. Unstable wave solutions
are found for Ri→∞ (unlike the case of long perturbations). The increase in stratifi-
cation is found to stabilize the basic flow. At the maximum stratification compatible
with static stability, the perturbation has a vanishing growth rate at all wavenumbers.

Results in the long-perturbation limit corroborate those predicted by an approxi-
mate layer model that restricts the buoyancy perturbations to have a linear vertical
structure. The approximate model is less successful in the short-perturbation limit
since the constraint to a linear density profile does not allow the correct representa-
tion of the exponential trapping of the exact eigensolutions. With strong stratification,
only the growth rate of long enough perturbations superimposed on basic states with
gently sloped lower boundaries behaves similarly to that of the exact model. However,
the stabilizing tendency on the basic flow as the stratification reaches its maximum is
also found in the approximate model. Its partial success in this case is also attributed
to the limited vertical structure allowed by the model.

1. Introduction
The classical problem of baroclinic instability consists of the study of normal-

mode perturbations to a parallel flow with uniform vertical shear in thermal-wind
balance with a horizontal density gradient. The layer of fluid has uniform vertical
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stratification and is confined between two horizontal rigid boundaries. This problem
posed on a uniformly rotating frame is known as the Eady model (e.g. see Gill 1982
or Pedlosky 1987). Unstable quasi-geostrophic wave solutions in the Eady model
correspond to a Richardson number Ri → ∞. Stone (1966, 1970) investigated the
non-geostrophic corrections to the Eady model. Analytic formulas for the corrections
were derived in Stone (1966) and demonstrated to be in good agreement with the
more exact numerical dispersion relations in Stone (1970). Three types of unstable
wave solutions were isolated: one type was the conventional baroclinic instability (i.e.
that of Eady extended to the ageostrophic regime) which dominated when Ri & 1;
the other two types, symmetric and Kelvin–Helmholtz instabilities, existed only when
Ri < 1. It should be mentioned that the results published by Stone (1966, 1970) are
not entirely correct since Kelvin–Helmholtz instability cannot arise when the basic
current has a uniform vertical shear (Ripa 1990; Vanneste 1993).

More recently, Fukamachi, McCreary & Proehl (1995, hereinafter referred to as
FMP), studied the stability of a baroclinic parallel current in an oceanic mixed layer
and showed that the existence of a free boundary may result in a non-vanishing growth
rate for the perturbations at all wavenumbers. FMP used a one-layer reduced-gravity
model allowing for an arbitrary vertical structure for the perturbations as well as
vertical displacements of the base of the active layer. The basic state had uniform
vertical stratification, which was assumed weak, and a parallel flow with uniform
vertical shear. According to the thermal-wind balance, a flow of such characteristics
requires, in general, a uniform slope at the base of the active layer in the direction
transversal to that of the flow. However, FMP’s analysis was restricted to the particular
situation in which the active layer’s base is horizontal, which can be shown to
correspond to a vanishing value of the velocity at the interface (since the deep layer is
assumed at rest). FMP derived an analytic expression for the dispersion relation (valid
for low-frequency, low-wavenumber waves) assuming Ri ∼ 1, and concluded that all
wavenumbers were unstable. FMP also computed numerical solutions restricted to
neither low-frequency nor low-wavenumber waves, and using a minimum value for
Ri = 1 in order to avoid the presence of symmetric and Kelvin–Helmholtz instabilities.
(Kelvin–Helmholtz instability is, however, excluded from this problem, even if Ri < 1,
as stated above.) The numerical solution corroborated the analytic result and extended
its range of validity. The instabilities found in the numerical calculation followed the
functional dependence on Ri suggested by Stone (1966). In consequence, FMP argued
that the unstable wave solutions derived analytically were a manifestation of non-
geostrophic baroclinic instability.

FMP also compared results with those predicted by an approximate layer model
that allows for density variations in time and horizontal position but keeps all dynami-
cal fields as depth independent, finding only minor differences between the dispersion
relations provided by both models. These ‘slab’ models have been extensively ex-
ploited (see Ripa 1996a and references therein). They represent an approximation
and do not have an explicit representation of the vertical shear, which, for instance,
is associated with horizontal buoyancy gradients (through the thermal-wind balance).
An improvement of these primitive equations models, proposed by Ripa (1995, here-
inafter referred to as R95), uses velocity and buoyancy fields varying linearly with
depth. The slab model and the new one are denoted by IL0PEM and IL1PEM re-
spectively, since they are the first and second truncations of an exact inhomogeneous
layer primitive equations model, indicated by IL∞PEM. Thus the superscript n in ILn

indicates the amount of vertical variation allowed for the density field in the sense
of the degree of polynomials in depth. The IL1PEM is able to represent explicitly
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the thermal-wind balance at low frequencies. Its quasi-geostrophic version, called
IL1QGM, was developed in Ripa (1997a, hereinafter referred to as R97).

The subinertial mixed layer (SML) approximation of Young (1994) is another
attempt to cure the deficiencies of the slab models. It has a free parameter µ :=
|f|−1

/τU , where τU is the time scale for vertical mixing of momentum and |f|−1
is

the inertial time scale, f being the Coriolis parameter. For µ → ∞ Young’s model
coincides with the IL0QGM (Ripa 1996b), whereas for µ → 0 it has an implicit
representation of the velocity’s vertical shear (through the thermal-wind balance) and
therefore it is not quite the same as the IL1QGM.

In R97 a comparison is presented of the approximate models (IL0, SML and IL1)
and the exact one (IL∞) in the sense of the free waves superimposed on a motionless
reference state and the integrals of motion. Let the constants Hr , gr and Nr be the
depth, mean buoyancy (relative to the lower layer) and Brunt–Väisälä frequency in
that state. Two independent horizontal scales can be defined, namely

RE :=
(grHr)

1/2

|f| and RI :=
NrHr

|f| . (1.1)

For each horizontal wavenumber, the IL∞ model sustains an infinite set of Rossby
waves, corresponding to the vertical modes of the system. For weak stratification
(RI � RE), the ‘equivalent barotropic’ or external mode has a deformation radius RE ,
whereas the internal modes have radii RI/(nπ) (n = 1, 2, ...). The approximate models
have only a finite number of those vertical modes: three in the case of the IL1 (with
radii equal to RE, RI/

√
12 and 0) and two for the IL0 and the SML models (with radii

equal to RE and 0). A vanishing deformation radius corresponds to a zero-frequency
Rossby wave or ‘force compensating mode’ (R95; Ripa 1996a; R97). This has zero or
negative free energy in the IL0 or SML models respectively, whereas all modes have
positive energy for both the IL1 and IL∞ models.

The approximate models (IL0, SML and IL1) were also compared in R97 for the
baroclinic instability problem in the limit of weak stratification RI/RE → 0. That com-
parison is completed here with the derivation of the dispersion relation and structure
of the normal modes for the IL∞ model in the case of perturbations with wavelengths
of O (RE). FMP’s horizontal bottom constraint for the basic state is relaxed and shown
to have important dynamic effects on its stability. The analysis is also extended to
arbitrary stratifications in the basic state, i.e. RI and RE of the same order. All these cal-
culations correspond to including free boundary effects to the classical Eady problem.
The study is carried out within the realm of a low-frequency approximation: a Rossby
number perturbation expansion is applied to the IL∞PEM and the IL1QGM is used.

The rest of this paper is organized as follows. The IL∞PEM is presented in §2
together with a review of the derivation of the IL1PEM and its low-frequency ap-
proximation IL1QGM. A comparison of the results from the normal modes baroclinic
stability analysis corresponding to both models is addressed in §3. Finally, main con-
clusions are presented in §4 and three Appendices contain some mathematical details.

2. Model equations
2.1. The IL∞ model

2.1.1. Total fields

Consider an active layer of fluid confined to the uppermost region of the ocean
overlying a motionless (infinitely deep) passive layer. Let −h(x, t) 6 z 6 0 be the
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active-layer definition where x is the horizontal position having Cartesian coordinates
x and y; z is the upward Cartesian coordinate and t is the time. The equations of
motion in the primitive equations model (i.e. with the hydrostatic approximation and
the Coriolis force in the horizontal directions) for an active layer with an arbitrary
vertical structure and without any forcing or dissipation are

IL∞PEM :


Dϑ/Dt = 0,

∇ · u+ ∂zw = 0,

Du/Dt+ fẑ × u+ ∇p = 0,

∂zp− ϑ = 0,

(2.1)

where D/Dt := ∂t + u · ∇ + w∂z is the material derivative; u(x, z, t) is the horizontal
velocity field with components u(x, z, t) and v(x, z, t); w(x, z, t) is the upward velocity;
∇ is the horizontal gradient operator and ẑ is the vertical unit vector. The symbol
ϑ denotes the buoyancy and is defined as ϑ(x, z, t) := −g[ρ(x, z, t) − ρdeep]/ρ0, where
g is the acceleration due to gravity, ρ is the density in the active layer, ρdeep is the
constant density in the lower (inactive) layer and ρ0 is the reference density used in the
Boussinesq approximation; p is a kinematic pressure related to the total pressure ptotal

through p(x, z, t) := [ptotal (x, z, t) + ρdeepgz]/ρ0 up to the addition of an unimportant
constant. The Coriolis parameter f is considered constant throughout the paper. The
rigid lid and reduced gravity constraints are imposed through the boundary conditions

w = 0 at z = 0, (2.2)

p = 0 and w = −Dh/Dt at z = −h. (2.3)

2.1.2. Basic state

As in R95 and R97 the basic flow is chosen as parallel with a linear vertical shear;
the Brunt–Väisälä frequency is assumed uniform. The geostrophic balance requires
the velocity, buoyancy and layer’s depth to be written as (see Appendix A)

U(z) = Ū +

(
1 + 2

z

Hr

)
Uσ, (2.4)

Θ(y, z) = gr

[
1 +

(
1 + 2

z

Hr

)
S − 2

fUσ

grHr

y

]
, (2.5)

H(y) = Hr +
f

gr

(
Uσ − Ū
1− S

)
y (2.6)

+ O(ε2), where ε→ 0 is a Rossby number and

S :=
N2
r Hr

2gr
. (2.7)

Notice that, up to O(ε), the velocity varies from Ū − Uσ at the bottom of the layer,
to Ū +Uσ at the top. Hence, the velocities Ū and Uσ can be taken as those defined
in R95 in σ-coordinates.

The parameter S is introduced as a measure of the stratification within the upper
layer in a stable stratified reference state without currents. To lowest order in ε (or
without currents) the buoyancy is gr[1 + (1 + 2z/Hr)S], i.e. it varies from gr (1− S),
at the bottom, to gr (1 + S), at the top. Consequently, physically acceptable values for
S must satisfy

0 < S < 1, (2.8)
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as a condition for the buoyancy to be everywhere positive and the density to increase
with depth. Notice that the size of the density gradient is not limited whatsoever:
the buoyancy change within the active layer, N2

r Hr = 2Sgr , can be made as large as
desired while keeping fixed the buoyancy jump at the base gr(1− S).

Small values of S correspond to weak stratifications, whereas finite values of S
imply stronger stratifications. In the limit S → 1 with gr finite, the buoyancy jump at
the interface between the upper layer and the deep ocean vanishes. In this unusual
case, the implicit assumption is that S → 1 more slowly than ε → 0, as required by
the hypothesis of very small interface slope in (2.6).

As can be seen in (2.6), a geostrophic current with uniform vertical shear requires
a non-horizontal bottom since, in general, there is no need to set Ū = Uσ , which
would correspond to a vanishing value of the velocity at the interface (recall that the
lower layer is motionless). In order to focus attention on instability processes related
to ∂yΘ (instead of dH/dy), FMP chose Ū = Uσ . In the present research the effects of
dH/dy are incorporated and shown to be dynamically important for the baroclinic
instability problem.

2.1.3. Perturbations

Assume a perturbation with a plane wave structure in x and time so that, for
instance, the velocity u is split as

u = U(z) + au′(y, z)ei(kx−ωt) + O(a2), (2.9)

where a is an infinitesimal wave amplitude (with the proper units). The O(a) contri-
bution to (2.1) is given by

i(kU − ω)ϑ′ − 2f
Uσ

Hr

v′ +N2
r w
′ = 0,

iku′ + ∂yv
′ + ∂zw

′ = 0,

i(kU − ω)u′ + 2
Uσ

Hr

w′x̂+ fẑ × u′ +
(
ik, ∂y

)
p′ = 0,

∂zp
′ − ϑ′ = 0.


(2.10)

The O(a) boundary conditions (2.2) and (2.3) are

w′ = 0 at z = 0, (2.11)

gr(1− S)w′ + f
(
Uσ − Ū

)
v′ = −i (kU − ω) p′ at z = −Hr. (2.12)

(The derivation of the bottom boundary condition for the linearized problem is
straightforward by use of the definition of the kinematic pressure p; it involves a
simple expansion in Taylor series about the depth of the layer in the reference state as
is shown in Appendix B.) Only the lowest order in ε of the basic fields is considered
from (2.10)–(2.12); the order of magnitud of the perturbation fields is treated in §3.1.

Notice that RI ≡ (2S )1/2RE . Thus in the limit of very weak stratification (S → 0)
there is a large separation between the two scales in (1.1), RE � RI , and then long or
short perturbations are possible to identify, according to their length scale L:

long perturbations : L ∼ RE � RI

or

short perturbations : L ∼ RI � RE.

The parameters gr and Nr , which define the buoyancy profile in the basic state, have
been replaced by gr and S in (2.4)–(2.12). The limit of weak stratification can be
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understood in two senses: either S → 0 with gr fixed or S → 0 with Sgr (∝ N2
r )

fixed. The first (second) case corresponds to the scaling of long (short) perturbations
and is formally equivalent to making Nr → 0 (gr → ∞) while keeping gr (Nr) finite.
The former corresponds to a situation in which the active-layer bottom is free to
deform, because (2.12) allows for a finite value of w′ at the bottom. The latter
corresponds to a case in which the bottom is effectively rigid, since (2.12) requires
w′ = 0 at the bottom. Consequently, the short-perturbation limit corresponds to the
well-known Eady problem. FMP studied the long-perturbation limit but concentrated
their research on the particular case in which the layer thickness in the basic state
is chosen to be constant (Ū = Uσ). For stronger stratifications (finite S) there is no
distinction between long and short perturbations, and the bottom always behaves as
a free boundary.

Even though typical values of S are reported quite small (see for instance Tandon
& Garrett 1995), it is considered worthwhile to extend the analysis to its whole range
of variation (2.8) in order to account for the effects of the increase of the stratification
(and, hence, the effects of a free boundary) on the baroclinic instability problem. In
the following section it will be shown that the dispersion relations corresponding to
long and short perturbations can be seen as limiting cases of a general theory that
does not impose any restriction on the size of the stratification parameter S more
than that required for static stability (2.8).

2.2. The IL1 model

The model developed in R95 uses the buoyancy field varying linearly with depth, with
coefficients that are functions of the horizontal position and time, namely

ϑ(x, σ, t) = ϑ̄(x, t) + σϑσ(x, t),

where the overbar indicates vertical average and σ := 1 + 2z/h is a scaled vertical
coordinate that ranges from σ = −1 (at the base of the active layer) to σ = 1 (at
the top of the surface). The vertical structure of the velocity field in the IL1PEM
is also set linear in σ, i.e. u(x, σ, t) = ū(x, t) + σuσ(x, t), and the equations of motion
are obtained by projecting the exact three-dimensional primitive equations system
IL∞PEM into a linear σ-dependence. (Recall that in any primitive equations model, u
is independent of ϑ and h.) This model has been shown to have the following concrete
properties that contribute to its validity:

(i) Energy, momentum, volume, mass and buoyancy variance are conserved. Fur-
thermore, the densities of these integrals of motion are the same as those of the IL∞

model.
(ii) The evolution of the vorticity field is correctly represented.
(iii) Linear waves riding on a steady state with no currents are, to a very good

approximation, those of the first two vertical modes of the IL∞ model.
A low-frequency approximation to the IL1PEM, i.e. the IL1QGM, is developed

in R97. The horizontal velocity field of R97 is non-divergent and in thermal-wind
balance, and therefore the velocity field does not vary just linearly with depth. Instead,
the streamfunction is written in the form

ψ (x, σ, t) = ψ̄ (x, t) + σψσ (x, t) + 1
2

(
σ2 − 1

3

)
ψσσ (x, t) ,

where  ψ̄
ψσ
ψσσ

 =

 1− S/3 1/2 −S/6
S/2 1/2 0
−S/2 0 S/2

 ϕ1

ϕ2

ϕ3

 (2.13)
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with

ϕ1 := fR2
E

(
h

Hr

− 1

)
, ϕ2 := fR2

E

(
ϑ̄

gr
− 1

)
, ϕ3 := fR2

E

(
ϑσ

Sgr
− 1

)
, (2.14)

and it is assumed that ϕj � fR2
E . (The determinant of the transformation matrix in

(2.13) vanishes for S = 0 and S = 1, and therefore the transformation is invertible
since these values lie outside the physical range 0 < S < 1, which also holds for the
present approximate model.) The evolution equations are

IL1QGM :


∂tξ̄ +

[
ψ̄, ξ̄

]
+ 1

3
[ψσ, ξσ] + 1

6
SR−2

E [ϕ1, ϕ3] = 0,

∂tξσ + [ψ̄, ξσ] +
[
ψσ, ξ̄

]
+ R−2

E

[
ϕ1 + ϕ3, Sϕ1 + 1

2
ϕ2

]
= 0,

∂tϕ3 + [ψ̄, ϕ3] + 1
2

[ϕ1, ϕ2] = 0,

(2.15)

where [A,B] := ẑ · ∇A×∇B is the horizontal Jacobian of the functions A and B, and

ξ̄ := f + ∇2ψ̄ − R−2
E ϕ1, ξσ := ∇2ψσ − 6R−2

I ϕ2 (2.16)

(see R97 for details).

3. Normal-modes stability analysis
In the present section general low-frequency analytic expressions for the normal

modes and their dispersion relation are derived, restricted to neither a weak stratifi-
cation nor a constant layer thickness in the basic state. This is done for both models
IL∞ and IL1. The long- and short-perturbations cases are obtained as the limits of
weak stratification (S → 0), with L ∼ RE and L ∼ RI respectively, of the general
dispersion relation corresponding to each model. The IL1 model is shown to give the
exact expression for the dispersion relation of long perturbations. Its behaviour at
strong stratifications is found not to follow exactly that of the IL∞ model.

3.1. Results for the IL∞ model

In order to quantify the restrictions built into the analytic solution, the following
scalings are proposed:

(x, z, t) ∼
(
L,Hr,

1

εf

)
,
(
u′, w′

)
∼
(
εLf, ε2Hrf

)
,
(
h′, ϑ′, p′

)
∼
(
εHr, ε

L2f2

Hr

, εL2f2

)
.

Recall, from Appendix A, that Ū, Uσ ∼ εLf where ε → 0. The election of 1/ (εf)
as the characteristic time scale restricts the analysis to low-frequency waves. The
low-frequency nature of the dynamics requires a vanishing O(ε) contribution to w′. In
consequence, an extra factor of ε is included in the scale of w′. All these assumptions
are nothing but the standard ones made in classical quasi-geostrophic theory (Pedlosky
1987).

A correct way to achieve the weak stratification–small Rossby number limit is to
define a positive constant ν such that

S = O (εν) as ε→ 0.

The Richardson number is Ri :=
(
Nr/∂zU

)2 ≡ 1
4
N2
r H

2
r /U

2
σ ∼ ε−2R2

I /L
2; consequently

Ri = O(ε−2) in the general case, finite S , as well as in the short perturbations case of
the S → 0 limit. This implies Ri→∞ as ε→ 0, which is a well-known assumption for
the Eady problem. However, in the long-perturbations case Ri ∼ ε−2S = O(εν−2) and
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therefore Ri might also remain finite (ν = 2) or even tend to zero (ν > 2) as ε → 0.
This is an important extension of the baroclinic instability problem, since Tandon &
Garrett (1995) argue that the restratification process leads to Ri ≈ 1.

According to the scalings introduced above it follows that the relative orders of
magnitude among the various terms of the linearized equations (2.10) are

i (kU − ω) ϑ′

ε2
− 2fUσH

−1
r v′

ε2
+ N2

r w
′

ε2R2
I
/L2

= 0,

iku′
ε

+ ∂yv
′

ε

+ ∂zw
′

ε2
= 0,

i (kU − ω) u′

ε2
+ 2UσH

−1
r w′x̂
ε3

+ fẑ × u′
ε

+
(
ik, ∂y

)
p′

ε

= 0,

∂zp
′

ε

− ϑ′
ε
= 0.


(3.1)

Whereas, for the bottom boundary condition (2.12) it follows that

gr (1− S)w′

ε2R2
E
/L2

+ f
(
Uσ − Ū

)
v′

ε2

=−i (kU − ω) p′

ε2
at z = −Hr. (3.2)

Let now expand all perturbation fields as well as the phase speed as regular asymptotic
expansions of the form

u′ = i (−l, k)ψ′eily + u′2 + . . . ,

w
′

= ik$eily + . . . ,
p′ = fψ′eily + p′2 + . . . ,
ϑ′ = f(dψ′/dz)eily + ϑ′2 + . . . ,
ω = kc + ω2 + . . . .
O : ε ε2 ε3

The perturbation streamfunction ψ′(z) is introduced since the O(ε) horizontal velocity
is non-divergent. The function $(z) is proportional to the amplitude of the lowest-
order perturbation vertical velocity, while the accompanying factor ik is introduced
for convenience. Notice that a wave-like structure in the y-coordinate is assumed
at lowest order since at this level no y-dependent terms appear in the equations of
motion or the bottom boundary condition. Because the basic physics of the instability
appears at lowest order, there will be no need to seek higher order solutions than
that corresponding to the eigenvalue c, which is O(ε). To achieve this, however, it
is necessary to deal with O(ε2) dynamics, which is governed by the lowest order
contribution to the buoyancy conservation equation (3.1, first equation), i.e.

(U − c) dψ′

dz
− 2

Uσ

Hr

ψ′ +
N2
r

f
$ = 0, (3.3)

and by the vorticity equation

(U − c) k2ψ′ + f
d$

dz
= 0, (3.4)

which follows after taking the curl of the O(ε2) horizontal momentum equations and
combining the result with the O(ε2) volume conservation law. Equations (3.3) and
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(3.4) are subject to the boundary conditions

$(0) = 0 and $(−Hr) =
fc

gr(1− S)
ψ′(−Hr), (3.5)

which follow from (2.2) and (3.2). If the second-order field $ is eliminated between
(3.3) and (3.4), a single equation for the first-order perturbation streamfunction field
follows, i.e.

(U − c)
[

d2ψ′

dz2
− κ2

I

H2
r

ψ′
]

= 0, (3.6)

with κ2
I := k2R2

I , which is the well-known quasi-geostrophic potential vorticity equa-
tion. Finally, to close the problem it is necessary to rewrite the boundary conditions
(3.5) in terms of the perturbation streamfunction. This is achieved by use of (3.3) and
the result is

(U − c)Hr

dψ′

dz
= 2Uσψ

′ at z = 0, (3.7)

(U − c)Hr

dψ′

dz
= 2

(
Uσ −

Sc

1− S

)
ψ′ at z = −Hr. (3.8)

Consider first the non-singular solutions of (3.6), i.e. solutions such that the bracketed
quantity in (3.6) vanishes. A solution that satisfies the surface boundary condition
(3.7) is found to be

ψ′ (z) =
(
c− Ū −Uσ

)
κI cosh κI

z

Hr

− 2Uσ sinh κI
z

Hr

. (3.9)

The bottom boundary condition (3.8) then yields a second-order algebraic equation
in c whose solutions give the dispersion relation

c = Ū +
S
[(
Uσ − Ū

)
− 2Uσκ

−1
I tanh κI

]
±Uσ∆

1/2

2S + (1− S) κI tanh κI
(3.10)

where

∆ =
{

4S 2κ−2
I + 4 (S − 1)

[(
1 + Ū/Uσ

)
S − 1

]
+ (S − 1)2 κ2

I

}
tanh2 κI

+
[
2−

(
3 + Ū/Uσ

)
S
] [

4Sκ−1
I + 2 (S − 1) κI

]
tanh κI

+ S2
[
9 + Ū/Uσ

(
2 + Ū/Uσ

)]
− 8S.

Dispersion relation (3.10) will be referred to as the general one, because those
corresponding to the long- and short-perturbation limits can be derived from this
one.

For each real horizontal wavenumber, the normal-mode analysis yields two modes
in z with eigenvalue c given by (3.10). These two modes are far from spanning a
complete basis that can be use to represent a perturbation with arbitrary vertical
structure. In order to complete the basis, it is necessary to account also for the
singular solutions of (3.6), i.e. those solutions satisfied for real c such that

d2ψ′

dz2
− κ2

I

H2
r

ψ′ = bδ (z − zc) ,

where c = U(zc), δ(·) is the Dirac delta function and b(κ2
I , zc/Hr) is, in general, a

non-zero constant. There are an infinite number of solutions exponentially trapped to
a critical level zc (see for instance Pedlosky 1987), each corresponding to a real value
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of c in the continuous range ∣∣c− Ū∣∣ < |Uσ| . (3.11)

Notice that this continuous spectrum of eigenvalues, required for completeness of
the total solution, corresponds only to neutrally stable perturbations. Thus there
will be no need to further discuss the continuous spectrum as far as the instability
problem is concerned, and the non-singular solutions of (3.6) will be sufficient for the
purpose of the present research. However, it should be mentioned that although the
long-time asymptotic behaviour is dominated by the discrete exponentially growing
normal modes, initial intensification can be shown to be dependent on the continuous
spectrum (e.g. see Farrell 1982).

3.1.1. Weak stratification

This limit corresponds to S → 0 and two cases are of interest, according to whether
L ∼ RE or L ∼ RI . In the first case, the last term in (3.1, first equation), vertical
advection of ambient buoyancy, can be neglected, since R2

I /L
2 ∼ S . In the second

case, the first term in (3.2) is the dominant one, since R2
E/L

2 ∼ S−1.

(a) Long perturbations: L ∼ RE � RI

The density (3.3) and vorticity (3.4) equations reduce to

(U − c) dψ′

dz
− 2

Uσ

Hr

ψ′ = 0, (U − c) k2ψ′ + f
d$

dz
= 0, (3.12)

with boundary conditions

$(0) = 0 and $(−Hr) =
fc

gr
ψ′(−Hr), (3.13)

Non-trivial solutions are given by

ψ′(z) = U − c (3.14)

and

$(z) = − k
2Hr

6fUσ

[
(U − c)3 −

(
Ū +Uσ − c

)3
]
, (3.15)

where the eigenvalue c satisfies the following dispersion relation:

long perturbations:

 c =

(
1 + 2κ2

E

)
Ū −Uσ ± ∆1/2

2 + 2κ2
E

,

∆ =
(
Ū −Uσ

)2 − 4κ2
EUσ

[
Ū + 1

3

(
1 + κ2

E

)
Uσ

]
,

(3.16)

with κ2
E := k2R2

E. Notice that the above dispersion relation can also be obtained from
the general one (3.10) on making the replacement κI = (2S )1/2κE and taking the limit
S → 0 at fixed κE , as long as

Ū/Uσ � O
(
S−1
)
. (3.17)

In addition, the streamfunction (3.14) is also found to be the lowest-order contribution
in S to (3.9). Analysis of the instability for very weak shears (or, equivalently, slopes
of the interface of the same order as that of isopycnals) e.g. Ū/Uσ = O

(
S−1
)

as
S → 0, goes beyond the scope of the present paper but is presented in (Ripa 1997b).
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Figure 1. Imaginary part of the eigenvalue c for (growing) long perturbations in the exact IL∞

model as a function of the non-dimensional perturbation horizontal wavenumber κE := |k|RE and
the ratio Ū/Uσ , where RE is the deformation radius in the first (‘external’) vertical normal mode
when the stratification is very weak, and the basic current at the active-layer surface and bottom
equals Ū + Uσ and Ū − Uσ . Notice that there is always a range of stable wavenumbers except
for Ū/Uσ = 1 and that the asymetry between Ū/Uσ > 1 and Ū/Uσ < 1. There is no difference
between this result and those corresponding to the approximate models IL1 (Ripa 1995, 1997a) and
the µ→ 0 limit of the SML (Young & Chen 1995).

A condition for the existence of growing and decaying normal modes, Im(c) 6= 0,
is that ∆ < 0. Hence, all horizontal perturbation wavenumbers such that

κ2
E > κ2

Ecrit.
=
[
1 + 3

(
Ū/Uσ

)2
]1/2

− 1
2

(
1 + 3Ū/Uσ

)
(3.18)

are found to be unstable with a vanishing critical wavenumber for Ū/Uσ = 1.
Equations (3.16) and (3.18) were first discussed in R95 and R97, where β-effects are
also considered.

Stone (1966) found the κE →∞ limit of the relation (3.16), i.e. the situation in which
the active-layer bottom is not free to deform, and included ageostrophic corrections.
FMP, using a free bottom condition, worked with the Ū/Uσ = 1 case and concluded
that all wavenumbers were unstable (κEcrit. = 0), i.e. there is no long-wave cutoff (it
makes no sense to talk of a short-wave cutoff in a long-wave theory.) The most
striking difference between relation (3.16) and that of FMP is that for Ū/Uσ 6= 1
(i.e. a non-horizontal layer bottom in the basic state) the flow is more stable to long
perturbations, in the sense that there is a finite long-wave cutoff. This is evident when
the imaginary part of the eigenvalue c, corresponding to the growing mode, is plotted
as a function of the perturbation horizontal wavenumber and the ratio Ū/Uσ , as is
done in figure 1. Notice that the flow appears to be more stable when Ū/Uσ < 1 than
when Ū/Uσ > 1. The case Ū/Uσ < 1 (> 1) corresponds to a situation in which the
depth and the buoyancy in the basic state increase along the y-direction in the same
(opposite) sense. In figure 2 the dispersion relation (3.16) is plotted as a function of
the perturbation horizontal wavenumber for various values of Ū/Uσ where it is clear
that the onset of the instability at κEcrit. is a result of the collision of the c+ and c−
branches of (3.16). (For the case Ū/Uσ = 1 the collision occurs at κEcrit. = 0 and hence
all long wavelengths are unstable.)
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Figure 2. Dispersion curves for the real and the imaginary parts of the eigenvalue c for long
perturbations as a function of the horizontal wavenumber in the IL∞ model. The real part of c is
the solid curve whereas the imaginary part (indicating instability) is dashed. The instability starts at
the wavenumber where the c+ and c− branches collide. The three cases correspond to Ū/Uσ = 1, 2
and 3, ordered by the bifurcation point. In particular, for the case Ū/Uσ = 1, the collision occurs
at κE = 0 and hence the perturbation has a non-vanishing growth rate at all (long) wavenumbers.
The curves corresponding to the approximate models IL1 and SML collapse into these exact ones,
in the limit of weak stratification (S → 0).

As far as the vertical structure of the lowest order perturbation fields is con-
cerned, it follows from (3.14) that the horizontal velocity and pressure are linear
functions of depth, the buoyancy perturbation is uniform whilst the vertical veloc-
ity is cubic (instead of exponential, as it is in the case of strong stratifications or
the short-perturbation limit). Notice that the eigenproblem (3.12)–(3.13) also has
an infinite number of singular eigensolutions in the continuous spectrum of real
eigenvalues (3.11).

(b) Short perturbations: L ∼ RI � RE

In this limit the eigenproblem (3.6)–(3.8) reduces to that of the well-known Eady
model whose non-singular eigensolutions are (3.9) with eigenvalues given by

Eady : c = Ū ±Uσ

[(
1− 2κ−1

I tanh 1
2
κI
) (

1− 2κ−1
I coth 1

2
κI
)]1/2

(3.19)

(e.g. see Gill 1982 or Pedlosky 1987). It is worth mentioning that the general dis-
persion relation (3.10) contains Eady’s, as the limit S → 0 with κI fixed, subject
to the restriction (3.17); see (Ripa 1997b) for an extension beyond it. The singular
eigensolutions in this limit are similar in character to those corresponding to strong
stratifications since both sets of eigensolutions follow from the potential vorticity
equation (3.6).

Notice that the limit of (3.19) when κI → 0 coincides with that of (3.16) when
κE → ∞, i.e. c = Ū ± iUσ

√
1/3, as is expected for a correct matching between

both asymptotic solutions. A very important property of (3.19) is the existence of
a high-wavenumber cutoff of the instability, namely c is real for κI > κIcrit. ≈ 2.4.
(A physical explanation of the existence of such a high-wavenumber cutoff can be
found in Pedlosky (1987).) This result is independent of the magnitude of the ratio
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Figure 3. Imaginary part of the eigenvalue c for the growing mode in the IL∞ model as a function
of the perturbation horizontal wavenumber and the ratio Ū/Uσ for different finite values of the
stratification parameter S := 1

2
N2
r Hr/gr where N2

r , gr and Hr are the Brunt–Väisälä frequency
squared, the mean buoyancy and the depth of the layer in a reference state without currents. Notice
that the growth rate of the perturbation goes to zero when S approaches unity.

Ū/Uσ , i.e. whether the base of the active layer in the basic state is sloped or not is
immaterial, except for the restriction (3.17). The independence of Ū/Uσ comes from
the fact that over one horizontal length L, the relative elevation of the interface is
O(εL2/R2

E); see (2.6). In the quasi-geostrophic scaling, the relevant non-dimensional
measure of the slope is thus L2/R2

E , which goes to zero for short perturbations. FMP
obtained only the κI → 0 limit of Eady’s dispersion relation, and for Ū/Uσ = 1,

namely c = Uσ(1± i
√

1/3).

3.1.2. Strong stratification

The range of interest in the parameter space is now 0 < S < 1. The imaginary
part of the general dispersion relation (3.10) corresponding to the growing mode is
displayed in figure 3 as a function of the perturbation horizontal wavenumber and
the ratio Ū/Uσ , for different values of the stratification parameter S . Notice also
the presence of a short-wave cutoff of the instability, which is found for all value of
Ū/Uσ and S . In figure 3 it is also evident that the increase in stratification inhibits
the ability of the perturbation to grow. Moreover, in the limit S → 1 it follows that
the dispersion relation (3.10) reduces to

c+ = Ū +Uσ − 2Uσκ
−1
I tanh κI and c− = 0, (3.20)

i.e. the growth rate of the perturbation vanishes at all wavenumbers for any choice
of Ū/Uσ .
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3.2. Results for the IL1 model

The stability to normal-mode perturbations of a basic state equivalent to that used
for the IL∞ model is studied assuming

ϕj = −Ajy + aϕ′je
i[k(x−ct)+ly] + O(a2)

and replacing in the model equations (2.15), which gives(
Ū − c

)
ξ̄′ + R−2

E A1ψ̄
′ + 1

3
Uσξ

′
σ + 2R−2

I A2ψ
′
σ + 1

6
SR−2

E

(
A1ϕ

′
3 − A3ϕ

′
1

)
= 0,(

Ū − c
)
ξ′σ + 6R−2

I A2ψ̄
′ +Uσξ̄

′ + R−2
E A1ψ

′
σ

+ R−2
E

[
(A1 + A2)

(
Sϕ′1 + 1

2
ϕ′2
)
−
(
SA1 + 1

2
A2

) (
ϕ′1 + ϕ′3

)]
= 0,(

Ū − c
)
ϕ′3A3ψ̄

′ + 1
2

(
A1ϕ

′
2 − A2ϕ

′
1

)
= 0,


(3.21)

where  A1

A2

A3

 = (S − 1)−1

 −1 1
S S − 2
−1 1

( Ū
Uσ

)
. (3.22)

In R95 the eigensolutions of the system (3.21), including β-effects, are studied in the
limit S → 0. In order to make a comparison with the results from the exact IL∞

model of the previous section, S will be allowed to take finite values. The problem
for the eigenvalue c then results in a third-order algebraic equation as is shown in
Appendix C.

3.2.1. Weak stratification

Dispersion relations for the long- and short-perturbation limits were derived in R95
and R97 assuming S → 0 from the beginning of the analysis. In the present formalism
they are found as the long- or short-wave limits of relation (C 1) by keeping κE fixed
or making the replacement κE = κI/(2S )1/2 with fixed κI respectively, and taking the
limit S → 0. The corresponding dispersion relations are

long perturbations:


c =

(
1 + 2κ2

E

)
Ū −Uσ ± ∆1/2

2 + 2κ2
E

,

∆ =
(
Ū −Uσ

)2 − 4κ2
EUσ

[
Ū + 1

3

(
1 + κ2

E

)
Uσ

] (3.23)

and

short perturbations: c = Ū ±Uσ

[(
κ4
I − 144

)
/3
]1/2

κ2
I + 12

, (3.24)

with a common third root given by c = Ū (ψ′σσ 6= 0), which is the mean value of
the continuous spectrum of eigenvalues (3.11) required for completeness of the total
solution in the IL∞ model. The absence of a continuous spectrum in the IL1 model is
in agreement with the limited vertical variation for the perturbations allowed by the
model.

It is remarkable to notice that the long-perturbation limit (3.23) coincides identically
with the exact calculation (3.16) and thus all the results concerning long perturbations
alluded to in the previous section also apply to (3.23). The vertical structure of the
horizontal velocity and pressure perturbations is linear, whereas the buoyancy is
uniform with depth. (The latter is readily seen when taking the limit S → 0 in
(2.14, last equation).) Notice that such a vertical structure is exactly the same as that
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Figure 4. As in figure 3 but now for the restricted model IL1. Notice that in the limit S → 0 the
behaviour of the growth rate of the perturbations is exact (compare with figure 3).

predicted by the IL∞. The first difference between the two models is found in the
structure of the vertical velocity, cubic vs. quadratic in z, which is O(ε2).

On the other hand, the short-perturbation limit (3.24) is exact as κI → 0 and has
a high-wavenumber cutoff corresponding to κIcrit. =

√
12 ≈ 3.46, which is about 44%

larger than that predicted by the Eady model. In addition, the asymptotic value of
c− Ū as κI → ∞ is about 43% smaller. The dispersion relation (3.24), compared to
that of Eady, is shown in figure 11 of R95.

3.2.2. Strong stratification

In figure 4 the imaginary part of the roots of the polynomial (C 1) are plotted
as a function of the perturbation horizontal wavenumber and the ratio Ū/Uσ , for
different values of the stratification parameter S . Notice that the growth rates of the
perturbations in the IL1 model approach those in the IL∞ model for weak enough
stratifications (see figure 3). Only the growth rate of long enough perturbations super-
imposed on basic states with nearly horizontal lower boundaries behaves similarly to
that of the exact model when the stratification is increased, as can be seen in figure 5.
The stabilizing tendency on the basic flow as the stratification reaches its maximum
is also found in the approximate model, though in the limit S → 1 it follows from
(C 1) that

c+ = Ū +

(
6 + κ2

I

3 + κ2
I

)
Uσ

2
and c− =

8Ū

2 + κ2
I

, (3.25)

rather than (3.20). The differences between (3.20) and (3.25) are attributed, as in the
short-perturbation limit, to the constraint on the buoyancy to a linear profile in depth,
which cannot reproduce the exponential trapping of the exact eigensolutions (3.9).
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Figure 5. Neutral stability curves in the (κE, Ū/Uσ)-plane for the IL∞ (solid) and for the IL1 (dashed)
models for different finite values of the stratification. The dotted line indicates the short-perturbation
cutoff in the Eady model, i.e. κI := |k|RI ≈ 2.4, where RI/π is the deformation radius in the first
internal vertical normal mode when the stratification is very weak. Notice that for very strong
stratifications (large S) the approximate IL1 model gives the correct result only near κE = 0 and
Ū/Uσ = 1.

4. Discussion
An analytic expression has been derived for the normal modes superimposed on

a basic steady state with uniform density stratification and a parallel current with a
uniform vertical shear in thermal-wind balance with the horizontal buoyancy gradient.
The basic velocity varies from Ū + Uσ , at the top, to Ū − Uσ , at the bottom of the
layer. The model, denoted by IL∞, is a reduced-gravity one on the f-plane, and allows
an arbitrary vertical variation for the perturbation fields. The dispersion relation and
normal modes structure derived here are valid to lowest order in the Rossby number
ε. Neither a weak stratification within the active layer (measured by the parameter
S), nor a constant active layer thickness (Ū/Uσ = 1) in the basic state are imposed
as rectrictions.

Two horizontal scales have been introduced, namely RE and RI from (1.1). In the
limit of very weak stratification (S → 0), in which case the deformation radii of the
‘equivalent barotropic’ or external mode and the gravest internal mode are RE and
RI/π respectively, there is a large separation between both scales (RE � RI ). Hence,
long (L ∼ RE) or short (L ∼ RI ) perturbations can be identified. The associated
dispersion relations are found as the long- and short-wave limits of the general
one.

(a) The short-perturbation limit corresponds to the well-known Eady problem
for which the shape of the active-layer bottom in the basic state, e.g. whether it is
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horizontal or not, is immaterial. This comes from the fact that in the quasi-geostrophic
scaling the relevant non-dimensional mesasure of the slope of the interface, L2/R2

E ,
tends to zero for short perturbations. Moreover, the layer bottom is effectively rigid in
this limit. The comparison with the eigenvalues of the approximate model IL1 (Ripa
1995; Ripa 1997a) (which only allows the buoyancy field to vary linearly with depth)
shows differences of the order of 40%, though it does have a high-wavenumber cutoff.
The reason for the disparities in the results at short wavelengths between the IL∞ and
IL1 models are attributed to the inefficient representation of the exponential trapping
of the Eady problem eigensolutions due to the restriction for the buoyancy to have a
linear profile in depth in the IL1 model.

(b) In the long-perturbation limit the bottom is free to deform. The derived disper-
sion relation is found not to be restricted to any value of the Richardson number, i.e
unstable wave solutions are found for Ri = O(εν−2) with S = O(εν) for any ν > 0 (in
contrast to the short-perturbation limit and the strong stratification case, for which
instabilities are found for Ri = O(ε−2)). In this limit the stability of the flow is sensible
to variations of the layer depth in the basic state. The flow is more stable when
Ū/Uσ < 1 than when Ū/Uσ > 1. In the first case, the depth and the buoyancy in
the basic state increase along the y-direction in the same sense; the second situation
corresponds to one in which the y-growth is in the opposite sense. The situation
studied by Fukamachi et al. (1995), Ū/Uσ = 1, is recognized as that of maximal
instability and it is shown that there is no need to assume any specific value of Ri
for its derivation. The vertical structure of the perturbation fields is found to be
linear for the horizontal velocity and pressure fields and uniform for the buoyancy.
All these results are exactly predicted by the approximate model IL1 and thus they
are an encouraging sign of its validity (at least in the present limit). Moreover, the
dispersion relation corresponding to the limit µ → 0 (see the Introduction) of the
SML approximation (Young & Chen 1995) also coincides with the exact one derived
here. However, in the SML the buoyancy is uniform in depth but the model has only
an implicit representation of the velocity’s vertical shear through the thermal-wind
balance.

When the stratification is not weak (finite S), the base of the active layer behaves
always as a free boundary. Moreover, an increase in stratification is found to contribute
to the stabilization of the basic flow. This result is no longer well-represented by the
IL1 model, also as a consequence of its limited vertical structure which does not
reproduce the exponential trapping of the IL∞ model’s eigensolutions that appear at
stronger stratifications. Nonetheless, it can be said that the growth rate of long enough
perturbations superimposed on basic states with gently sloped lower boundaries
behaves similarly to that of the exact model at strong stratification.

The results corresponding to the exact model IL∞ were derived starting from the
primitive equations and restricting the analysis to strong shears (isopycnal slope much
larger than that of the interface), e.g. Ū/Uσ � O(S−1) as S → 0. The extension to
weak shears is studied in Ripa (1997b), where a quasi-geostrophic reduced-gravity
model is used from the beginning.

Useful discussions with W. R. Young, J. Sheinbaum and J. Ochoa are greatly
appreciated. F.J.B.V. gratefully acknowledges the financial support provided by the
Secretarı́a de Relaciones Exteriores del Gobierno de México in the form of an
Argentina-México academic interchange’s scholarship which made possible joining
the M.S. program at C.I.C.E.S.E. This research has been supported by C.I.C.E.S.E.’s
core funding and by C.O.N.A.C.yT. (México) under grant 1282-T9204.
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Appendix A. Construction of the basic state
Consider the basic velocity written as

U(y, z) = Ū +

[
1 + 2

z

H(y)

]
Uσ (A 1)

and the basic buoyancy as

Θ(y, z) = Θ̄(y) +

[
1 + 2

z

H(y)

]
Θσ(y).

Integrating the hydrostatic balance up from the base of the active layer it follows
that

P = Θ̄H +
(
Θ̄ +Θσ

)
z +

Θσ

H
z2.

Since there are no terms proportional to z2 in (A 1), the geostrophic balance requires
Θσ/H = const., say

Θσ

H
= 1

2
N2
r .

Both coefficients of the linear profile in (A 1) yield, through the geostrophic balance,

f
(
Ū +Uσ

)
+

d

dy

(
Θ̄H

)
= 0, 4f

Uσ

H
+ 2

dΘ̄

dy
+N2

r

dH

dy
= 0. (A 2)

These equations are used to calculate Θ̄(y) and H(y).
Now, if it is assumed that

Ū, Uσ ∼ εfL,
where L is a typical horizontal length scale and ε→ 0, then it follows that

Θ̄ = gr + Ay + O
(
ε2
)

and H = Hr + By + O
(
ε2
)
,

where the coefficients A and B must be such that f
(
Ū +Uσ

)
fUσ

+

 Hr gr

Hr/2 N2
r Hr/4

 A

B

 = 0,

in order to satisfy (A 2). Hence, up to O(ε), expressions (2.4)–(2.5) follow. 2

Appendix B. Linearized bottom boundary condition
Taking into account that

P + ap′ + O(a2) = 0 at z = −
[
H + ah′ + O(a2)

]
,

where P (z = −H) = 0, and expanding in Taylor series about −H , i.e.

a
[
p′ − (∂zP ) h′

]
+ O(a2) = 0 at z = −H,

it follows to O(a) that

p′ = Θh′ at z = −H, (B 1)

since ∂zP = Θ. In addition, the kinematic bottom boundary condition to O(a) reads

w′ = −
(
∂th
′ +U∂xh

′ +
fU

Θ
v′
)

at z = −H. (B 2)
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The bottom boundary condition (2.12) follows immediately after combining (B 1) and
(B 2), but keeping only the lowest order in ε of the basic fields. 2

Appendix C. Eigenvalue equation for the IL1 model
Writing the system (3.21) in terms of the perturbation streamfunctions according

to (2.13) and (2.16), and using (3.22) it follows that
3κ2

Eλ+ 3
λ+ α

1− S −κ2
E − 3

λ+ α

1− S
λ+ α

1− S

3S
λ+ α

1− S + κ2
ES − 6 6α− κ2

ESλ+ 3 (S − 2)
λ+ α

1− S S
λ+ α

1− S + 2

−3S (λ+ α) 3S (λ+ α) (5S − 6) λ− S




ψ̄
′

ψ′σ

ψ′σσ

= 0,

where λ := (c − Ū)/Uσ and α := Ū/Uσ . Non-trivial solutions will only exist if the
determinant of the matrix vanishes, which results in a third-order algebraic eigenvalue
equation, namely

C1λ
3 + C2λ

2 + C3λ+ C4 = 0, (C 1)

whose coefficients are given by

C1 = (1− S)
[
S (5S − 6) κ4

E + 6 (S − 6) κ2
E − 36

]
,

C2 =
(
S3 − S2

)
κ4
E + 4 [(7α− 4) S + 3− 6α] Sκ2

E + 6 (5 + 7α) S − 36 (α+ 1) ,

C3 =
(

5
3
S3 − 11

3
S2 + 2S

)
κ4
E +

[
2
(
2α2 − 12α− 3

)
S 2 + 2 (9α+ 10) S − 12

]
κ2
E

+6
(
α2 + 6α− 1

)
S − 36α,

C4 = 1
3

(
S2 − S3

)
κ4
E −

[
2
(
α2 − 2α− 1

)
S + 2 (α+ 1)

]
κ2
E + 6

(
α2 − α

)
.
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